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1 Introduction

It became clear after the work of Nelson and Seiberg [2] that global R-symmetry plays

a key role in connection with supersymmetry breaking. In order to have spontaneous

supersymmetry breaking at the ground state of generic models there must be a global

U(1)R symmetry, but in order to have non-zero gaugino masses it is necessary that this

symmetry be explicitly or spontaneously broken. The work of Intriligator, Seiberg, and

Shih (ISS) [3] showed how this tension between R-symmetry and supersymmetry can be

exploited to find generic models with an acceptably long lived meta-stable supersymmetry

breaking vacuum. Moreover, studying the Seiberg dual of N = 1 super-QCD it has been

shown that, at high temperatures, the supersymmetry breaking vacua are dynamically

favored over the “supersymmetry preserving” ones1 so that the Universe would naturally

have been driven into them [4]–[9], a possibility already discussed on general grounds a

long time ago in [10].

Different models with meta-stable symmetry breaking vacua and structures rather

different than those discussed by ISS have been also investigated, as for example those

based in gauge mediation and extraordinary gauge mediation, which cover a broad class of

R-symmetric generic models with supersymmetry breaking [11]–[14].

There is a very practical mechanism proposed in [1] leading to spontaneous U(1)R
breaking. It applies to O’Raifeartaigh models with a continuous space of supersymmetry

breaking vacua and degenerate tree-level vacuum energy. It has been shown in that work

that, due to one loop corrections, spontaneous R-symmetry breaking occurs à la Coleman-

Weinberg in a very simple O’Raifeartaigh type model and for a wide range of parameters.

1At finite temperature SUSY is always broken. With the quotation marks we mean the phase which,

for zero temperature, corresponds to a supersymmetry preserving vacua.
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More general models of this kind have been discussed in [15] and their thermal history has

also been recently investigated [16].

It is the purpose of this work to study the question of spontaneous U(1)R symme-

try breaking at finite temperature and the resulting supersymmetry breaking pattern by

analyzing the thermal evolution of the O’Raifeartaigh-type model introduced in [1]. To

this end we will compute the finite temperature effective potential (i.e. the free energy

density) by shifting as usual the relevant background fields and use the resulting quadratic

terms (the mass terms) to perform the one-loop calculation. Studying numerically the

corresponding one loop effective potential we will analyze the nature of the different phase

transitions, showing how parameters of the model can be chosen so as to cover the desire

range of critical temperatures at which R-symmetry breaking takes place. As we shall see,

our numerical results are consistent with the general analysis presented in [16] where a

broad class of models for gauge mediation were considered. Indeed, in the classification of

Extraordinary Gauge Mediation Models (EOGM) of [11], the model we analyze belongs to

the type I class (provided one promotes the singlet messengers to fields transforming in the

5 ⊕ 5 representation of SU(5)). Our analysis will confirm the thermal evolution scenario

advanced in [16] for type I models, in particular concerning the existence of a metastable

vacuum at high temperatures with no T = 0 analog

In the next section we introduce the model proposed in [1] and describe its classical

vacua, which includes a moduli space and a runaway direction. We then present the

different terms that contribute to the one loop finite temperature effective potential V 1
eff.

In section 3 we calculate V 1
eff along the pseudo-modulus, which is at the origin of the

dynamically generated meta-stable vacuum, and analyze the R-symmetry breaking phase

transition. We then extend in section 4 the calculation of V 1
eff by considering a background

field that interpolates between the meta-stable vacuum and the runaway direction, and

discuss in detail the resulting thermal scenario. We finally summarize and discuss our

results in section 5.

2 Set up of the model and the effective potential

We consider the O’Raifeartaigh model for chiral superfields considered in [1], with canonical

Kälher potential and superpotential

W = λXφ1φ2 + m1φ1φ3 +
1

2
m2φ

2
2 + fX (2.1)

This superpotential defines the underlying model which communicates supersymmetry

breaking to the minimal supersymmetric Standard Model. Chiral superfields φi (i = 1, 2, 3)

with R charges

R(φ1) = −1 , R(φ2) = 1 , R(φ3) = 3 , (2.2)

represent the messengers of supersymmetry breaking and the spurion field X generates the

model’s pseudo-moduli space and has charge R(X) = 2. Parameters λ, f , m1, and m2 will

be taken, without loss of generality, as real positive numbers.

– 2 –
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The resulting scalar potential (we use the same notation for superfields and their lowest

components) takes the form

V tree(X,φi) = |λφ1φ2 + f |2 + |λXφ2 + m1φ3|2 + |λXφ1 + m2φ2|2 + |m1φ1|2 (2.3)

and its extrema consist of:

• a moduli space

φ
(m)
i = 0 , X(m) arbitrary (2.4)

with

V = f2 > 0 (2.5)

• a runaway direction

φ
(r)
1 =

(

f2m2

λ2m1φ3

)
1

3

, φ
(r)
2 = −

(

fm1φ3

λm2

)
1

3

, φ
(r)
3 → ∞,

X(r) =

(

m2
1m2φ

2
3

λ2f

)
1

3

(2.6)

with

V → 0 . (2.7)

The moduli space does not correspond to global minima of the potential but, as long as

|X| <
m1

λ

1 − y2

2y
(2.8)

where

y =
λf

m1m2
(2.9)

it leads to local minima of the potential. Since the X field is R-charged, such flat direction

breaks the global U(1)R symmetry for any X 6= 0 in the range (2.8). It is clear now that

if quantum corrections produce a minimum at some point 〈X〉 6= 0 of this flat direction,

which then corresponds to a pseudo-moduli, the associated vacuum expectation value will

spontaneously break the R-symmetry. This was shown at T = 0 in [1] by computing the

one-loop effective potential. We will now extend the analysis to include thermal effects

by computing the finite temperature effective potential up to one loop, which takes the

form [17]

V eff
1 (Xcl, φcl

i ) = V tree(Xcl, φcl
i ) + V 0

1 (Xcl, φcl
i ) + V T

1 (Xcl, φcl
i ) . (2.10)

The original fields are written in the form

X = Xcl + x

φi = φcl
i + ϕi (2.11)

– 3 –
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to proceed to compute the one-loop contribution by integrating terms quadratic in the

fluctuations x, ϕi. The zero temperature piece V 0
1 of the effective potential is given by the

usual supersymmetric generalization of the Coleman-Weinberg formula

V 0
1 =

1

64π2
STrM4 log

M2

Λ2
(2.12)

where STr is the supertrace including a negative sign for fermions, M stands for the full

mass matrix resulting from the shift (2.11), M = M(Xcla, φcla
i ), and Λ is a mass scale.

Concerning the finite temperature contribution, one has [17]

V T
1 =

T 4

2π2

∑

i

±ni

∫ ∞

0
ds s2 log

(

1 ∓ e−
√

s2+M2

i /T 2

)

(2.13)

where the sum is over all degrees of freedom ({ni} denotes the number of degrees of freedom,

n = 2 for complex scalars and Weyl fermion and the upper (lower) sign is for bosons

(fermions)). Finally, Mi denotes the eigenvalues of the M-matrix.

In order to make contact between the parameters of the model with scalar poten-

tial (2.3) and those of the Minimal Supersymmetric Standard Model (MSSM) one has to

consider masses of the observable fields. It should be mentioned that a superpotential of

the type (2.1) should be in principle supplemented with a minimal gauge mediation (MGM)

messenger φ4 which, coupled to the spurion field X through a term of the form Xφ2
4, will

effectively give a mass to the otherwise massless gaugino [11]. Note that the introduction

of this additional messenger would promote our model to a type III one, for which, in-

stead of a condition of the form (2.8) stability requires an upper and a lower bound for X,

Xmax > |X| > Xmin, as noted in [11] for T = 0 and discussed in [16] for finite T . In the case

of the model we consider one should adjust the parameters so that such bounds hold at all

temperatures and as the temperature grows Xmin(T ) approaches the origin faster than the

pseudomodulus minimum. We leave for a future work a detailed analysis of this issue and

proceed to determine the orders of magnitude of the different superpotential parameters

by analyzing sfermion masses.

Sfermion masses m2
f̃

can be extracted from the matter wave function renormalization

through the formula [18],

m2
f̃
∼ α2

(4π)2

(

f

m

)2

Ñ (2.14)

where α is the running coupling constant of the underlying gauge theory (evaluated at the

messenger scale, α/4π ∼ 10−2) and

Ñ = λ2 ∂2

∂x∂x∗

3
∑

i=1

log2 |MFi|2 . (2.15)

Here MFi are the eigenvalues of the fermion mass matrix resulting from superpotential (2.1)

and for simplicity we have set m1 = m2 = m and defined x = λX/m. Given configura-

tion (2.4), MF can be written in the form

M2
F = m2







xx∗ + 1 x 0

x∗ xx∗ + 1 x

0 x∗ 1






(2.16)
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Formula (2.14) is valid in the regime f ≪ m2 for which supersymmetry is broken only in

the effective field theory bellow the messenger scale by soft terms.

Now one can check that

Ñ(x → 0) = λ2 , Ñ(x → ∞) = 0 (2.17)

Moreover, had we added the MGM messenger, the Ñ behavior at infinity would have raised

to λ2 so that we can take Ñ ∼ λ2 in the whole range. In fact, if one scales X → X/λ and

f → λf the coupling λ completely disappears from superpotential (2.1) so that we can just

set Ñ ∼ 1 in (2.14).

Since one expects that the sfermion mass should be in the TeV scale, one infers

from (2.14) that f/m ∼ 100 TeV, this in turn implying that m ≫ 100 TeV. The esti-

mate would remain nearly unchanged if instead of the assumption f ≪ m2 we consider the

case f ∼ m2. We conclude that for the analysis of the thermal evolution of the system,

high temperatures will correspond to T ≫ 100 TeV.

3 The fate of the meta-stable vacuum

We start by considering the effective potential for configuration (2.4), that is, we take

φcl
i = φ

(m)
i = 0 and Xcl = X(m) = X in formula (2.10). In this case the boson mass matrix

takes the form (we omit the superscript m)

M2
B =



















m2
1 + λ2X2 m2λX 0 0 fλ 0

m2λX m2
2 + λ2X2 m1Xλ fλ 0 0

0 m1λX m2
1 0 0 0

0 fλ 0 m2
1 + λ2X2 m2λX 0

fλ 0 0 m2λX m2
2 + λ2X2 m1λX

0 0 0 0 m1λX m2
1



















(3.1)

while the fermion mass matrix reads

M2
F =



















m2
1 + λ2X2 m2λX 0 0 0 0

m2λX m2
2 + λ2X2 m1xλ 0 0 0

0 m1λX m2
1 0 0 0

0 0 0 m2
1 + λ2X2 m2λX 0

0 0 0 m2λX m2
2 + λ2X2 m1λX

0 0 0 0 m1λX m2
1



















(3.2)

Using this result, one can compute the zero-temperature one-loop contribution (2.12), as

originally calculated in [1],

V 0
1 =

1

64π2
Tr

(

M4
B log

M2
B

Λ2
−M4

F log
M2

F

Λ2

)

(3.3)

as well as the finite temperature one, eq. (2.13), which can be rewritten in the form

V1
T =

T 4

2π2

6
∑

i=1

∫ ∞

0
ds s2

(

log
(

1 − e−
√

s2+M2

Bi
/T 2

)

− log
(

1 + e−
√

s2+M2

Fi
/T 2

))

(3.4)
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Figure 1. The effective potential as a function of |X | showing the second order phase transition

(we have taken r = 4 and y = 0.2). The curve in the middle corresponds to the critical temperature

which for the chosen parameters takes the value TR/m = 0.95.

Figure 2. Plot of y = λf/(m1m2) as a function of r = m2/m1 for T = 0, 1, 1.5, and 1.8 (from

left to right). The white region corresponds to a local (R-symmetry breaking) minimum (with no

tachyons).

One can scale X → m1X/λ and masses so that the effective potential only depends on

the rescaled X and on two parameters: y, defined in eq. (2.9), and r, given by

r =
m2

m1
(3.5)

so that V eff
1 = V eff

1 (X; r, y) with m1 giving the mass scale.

Eigenvalues MBi and MFi (with i = 1, . . . , 6) of mass matrices MB and MF have

to be computed numerically. Of course, at T = 0 one reproduces the results in [1] thus

finding that, for a wide range of parameters, there is a meta-stable vacuum where U(1)R
is spontaneously broken. Concerning the thermal evolution we show in figure 1 the plot

of V eff
1 as a function of X for different temperatures. In figure 2 we represent the change

with temperature of the region (shown in white) in the r, y plane where there is a U(1)R
symmetry breaking local minimum of the potential satisfying (2.8).

Using different pairs of values (r, y) in the range where R symmetry breaking occurs

– 6 –
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(white region in figure 2) we have then found a second order phase transition at a certain

critical temperature TR, so that for T < TR there is a minimum away from the origin, i.e.

at X = 〈X〉 6= 0.

Interestingly enough, changing parameters one can make the critical temperature vary

in a wide range. For example, for the choice of parameters corresponding to figure 1,

(y = 0.2, r = 4) the critical temperature is TR/m = 0.95 while for y = 0.2, r = 2.07 it

becomes TR/m ∼ 10−3. In fact, by choosing parameters (r, y) closer and closer to the

left frontier of the white region in figure 2 one can lower the critical temperature as much

as wanted. Taking into account the condition m ≫ 100 TeV previously found from the

requirement that msf ∼ 1TeV, we see that the critical temperature at which R-symmetry

is broken can be adjusted in a wide range going for the two choices we have used as example,

from TR ≫ 100 TeV to TR ∼ 1TeV. It should be noted that as the value of the critical

temperature lowers the R-symmetry breaking VEV 〈X〉 gets closer to the origin.

4 The fate of the runaway direction

We will now study the behavior of the runaway direction as the temperature changes. To

this end, we will follow an approach similar to that used in [4] in the case of the ISS and

consider a path (X int, φint
i ) interpolating between the meta-stable supersymmetry vacua

and the supersymmetric runaway direction. A convenient choice of path is

X int =

(

m2
1m2φ

2
3

λ2f

)
1

3

+ (1 − h(φ3)) 〈X〉 , (4.1)

φint
1 = h(φ3)

(

f2m2

λ2m1φ3

)
1

3

, φint
2 = −

(

fm1φ3

λm2

)
1

3

, φint
3 = φ3,

The function h(φ3) should be chosen so as to conciliate the behavior of X and φ1 at the

two-endpoints. An appropriate election is

h(y) =
2

π
arctan cy (4.2)

where c is a parameter to be chosen so that the path, which goes from the zero temperature

meta-stable local minima (φ3 = 0) at X = 〈X〉 to the runaway value (φ3 → ∞) does not

have modes with negative square masses.

We present in an appendix the explicit form of boson and fermion masses for the

path (4.1). From their explicit form one can numerically study the effective potential as a

function of φ3 and the temperature, V eff
1 = V eff

1 (φ3, T ), and determine the resulting minima

landscape. First, one has to numerically compute the mass eigenvalues and then evaluate

the zero temperature one-loop contribution to the effective potential (eq. (3.3)) as well as

the finite temperature one, V T
1 , given by eq. (3.4).

One should note that at very high temperatures V T
1 , as given by

formula (2.13), becomes

V T
1 ∼ −π2

8
T 4 for T → ∞ (4.3)

– 7 –
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Figure 3. Free energy vs. total energy for T/m = 5.

Note that the negative sign in the effective potential is harmless since at finite temperature

V eff
1 should be identified with the free energy as a function of the order parameter while

the total energy is given by

E = V eff
1 − T

∂V eff
1

∂T
(4.4)

which is indeed positive for all temperatures. We show in figure 3 the free energy V eff
1

(left) and the total energy E (right) at very high temperatures. The figure clearly shows

that although the energy is lower in what will become at zero temperature the runaway

direction, the entropy contribution favors the non supersymmetric free energy minimum

near the origin

From the numerical analysis of the complete effective potential V eff
1 (φ3, T ) one infers

the following scenario for the thermal evolution of the effective potential:

• For T/m ≫ 1 the potential has an absolute minimum at the origin in field space

and it grows without bound for large values of φ3. The zero-temperature meta-stable

vacuum in the pseudomoduli direction has not yet started to develop and one finds,

in addition, a local minimum at a finite value φ∗
3 (i.e. V eff ∗

1 (φ∗
3, T

∗) > V eff ∗
1 (0, T ∗))

• As the temperature lowers, the slope of the potential at infinity decreases until it

becomes negative. The change of sign takes place at a temperature Th at which the

absolute minimum of the potential is still at the origin.

• At a lower temperature Tb the local minimum V eff ∗
1 disappears.

• At a lower temperature Tra, V eff
1 (φ3 → ∞, Tra) = V eff

1 (0, Tra) so that the runaway

minimum appears and a first order phase transition starts.

• As already discussed, at a lower temperature TR the R-symmetry breaking meta-

stable vacuum arises.

As an example, for the parameter choice r = 4, y = 0.2 already used to discuss the meta-

stable vacuum evolution, the temperatures defined above take the values

Th/m = 2.96 , Tb/m = 1.29 , Tra/m = 1.14 , TR/m = 0.95 (4.5)

– 8 –
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Figure 4. Evolution of the effective potential with temperature.

We have already described how changing parameters (r, y) towards the left border of

the R-symmetry braking region (white region in figure 2) lowers the critical temperature at

which the transition to the meta-stable vacuum takes place. All other temperatures lower

but their change is not so marked. As an example, for (r = 2.7, y = 0.2) one has

Th/m = 1.5 , Tb/m = 0.99 , Tra/m = 0.81 , TR/m = 1 × 10−3 (4.6)

Figure 4 shows a qualitative representation of the above scenario.

In order to exclude the possibility that the system escapes towards the runaway di-

rection instead of decaying into the meta-stable vacuum let us note that for T > Tb the

– 9 –
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effective potential has an absolute minimum at the origin. Only for temperatures T ≤ Tb

the runaway direction corresponds to an (asymptotic) global minimum of the effective po-

tential. Since such temperatures are sufficiently low as to neglect thermal corrections, one

can see [1] that the barrier preventing the system to roll-down along the runaway direction

has a width of order y−1 while its height is of order y0. Hence, by taking y sufficiently

small the system will remain in the vacuum at the origin while Tb < T < TR and then

smoothly evolve towards the meta-stable vacuum for T < TR.

5 Discussion

We have analyzed the thermal evolution of the simplest O’Raifeartaigh-type model in which

spontaneous R-symmetry breaking occurs dynamically, leading to a runaway behavior at

large fields and a meta-stable vacuum which, at zero temperature, spontaneously breaks

supersymmetry. Studying the effective potential at finite temperature we have shown

that the U(1)R breaking arises through a second order phase transition. Remarkably, the

critical temperature at which the R-symmetry breaking phase starts can be lowered by an

appropriate choice of parameters and this also implies that the VEV of the spurion field

X also decreases.

We also analyzed the thermal evolution of the runaway direction finding, as expected,

that high temperature contributions rise the asymptotic directions of the effective potential.

Remarkably, we found that at high temperatures there is an extra local minimum of the

effective potential, though energetically unfavored with respect to the meta-stable vacuum.

At some temperature (Tb) this local minimum disappears.

The whole thermal evolution sequence is as follows: At high temperatures the model

is driven to the meta-stable SUSY-breaking vacuum. As the temperature decreases, the

SUSY runaway direction becomes energetically favored but the transition between phases

is long lived, so the system remains in the meta-stable vacuum. There is also an extra

local minimum but with higher effective potential than the meta-stable vacuum. As the

temperature decreases this extra minimum fades away. Finally, at an even lower temper-

ature (TR), the R symmetry is broken and a second-order phase transition occurs. This

sequence, with the exception of the existence and eventual disappearance of the extra local

minimum, is similar to the one described in [4]–[8] for the magnetic dual of SuperQCD. As

stated in the introduction, the model studied here can be extended to the form of a type

I model in the classification of ref. [11]. The general properties of the thermal evolution

of these models was discussed in [16] and our numerical analysis of the vacuum structure

at different temperatures is consistent with them. In particular our results confirm the

existence of an extra vacuum at high T in addition to the one at the origin, with no analog

at T = 0. This extra vacuum disappears as the temperature lowers below Tb.

An implicit assumption necessary to apply our results in a cosmological context is

that the reheat temperature Treheat is larger enough (with respect to the supersymmetry

breaking scale) as to guarantee that the supersymmetry breaking history develops quasi-

statically, in a situation of thermal equilibrium. This justifies to look for the minima of the

free energy not taking into account possible interaction between fields and the heat bath.

– 10 –
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Ignoring the possibility of non-equilibrium situations our results suggest that although the

runaway direction starts to develop before the R-symmetry breaking meta-stable minimum

appears, the system will not roll-down from the minimum at the origin because of the

existence of a very high barrier so that when the R- symmetry breaking meta-stable vacuum

is available, it will evolve to it and remain there for a sufficiently large time as to ensure

that the Universe is still trapped there.

We would like to end this work by pointing out two directions in which we hope to con-

tinue our investigation on R-symmetry breaking and supersymmetry breaking at finite tem-

perature. One concerns the analysis of models with explicit R-symmetry breaking which,

under certain conditions, have supersymmetric vacua, runaway directions and meta-stable

vacua [19]. As discussed in [20], the way in which R-symmetry is broken (spontaneously

or explicitly) leaves a clear imprint on the phenomenology of the MSSM and it is then

worthwhile to study broad classes of such models so as to compare the resulting thermal

patterns. The other direction is related to the analysis in [21] on how pseudomoduli arising

in generalized O’Raifeartaigh models from additional global symmetries can be candidates

to dark matter (see also [22]). In this context it would be of interest to investigate the

thermal evolution of such models along the lines developed here. We hope to analyze these

issues in a future work.

Acknowledgments

We would like to thank Diego Marqués for his criticism and helpful comments. This work

was partially supported by PIP6160-CONICET, BID 1728OC/AR PICT20204-ANPCYT

grants and by CIC and UNLP, Argentina.

A Mass matrices

We write the boson and fermion mass matrices corresponding to the path (4.1) in the form

M2
F =

(

A 0

0 A

)

, M2
B =

(

A B

B A

)

(A.1)

where A and B are symmetric 4 × 4 matrices with nonzero elements

A11 =
r2y4/3h(φ3)

2m
8/3
1

φ
2/3
3 λ2/3

+ y2/3φ
2/3
3 λ2/3m

4/3
1

A12 = A21 =

m
4/3
1 ry2/3λ2/3h(φ3)

(

−h(φ3)x0 + x0 +
3
√

m1φ
2/3

3

3
√

y
3
√

λ

)

3
√

φ3

A13 = A31 = −m
2/3
1 x0

3
√

y 3
√

φ3λ
4/3 − m1φ3λ +

(

r2y2/3m
7/3
1 + x0

3
√

yφ
2/3
3 λ5/3m

2/3
1

)

h(φ3)

3
√

φ3
3
√

λ

A14 = A41 = −m
5/3
1

3
√

y 3
√

φ3
3
√

λ
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A22 = m2
1 + y2/3φ

2/3
3 λ2/3m

4/3
1 +

(

x0λ − x0h(φ3)λ +
3
√

m1φ
2/3
3 λ2/3

3
√

y

)2

A23 = A32 = m1r

(

x0λ +
3
√

m1φ
2/3
3 λ2/3

3
√

y
− (m1y + x0λ)h(φ3)

)

A33 =
r2y4/3h(φ3)

2m
8/3
1

φ
2/3
3 λ2/3

+ r2m2
1 +

(

x0λ − x0h(φ3)λ +
3
√

m1φ
2/3
3 λ2/3

3
√

y

)2

A34 = A43 =
φ

2/3
3 λ2/3m

4/3
1

3
√

y
+ x0λm1 − x0λh(φ3)m1

A44 = m2
1

B12 = B21 =
m

4/3
1 r 3

√
y 3
√

λ(h(φ3) − 1)
(

3
√

m1φ
2/3
3 − x0

3
√

y 3
√

λh(φ3)
)

3
√

φ3

B13 = B31 = m
2/3
1 x0

3
√

y 3
√

φ3λ
4/3(h(φ3) − 1)

B23 = B32 = −m2
1ry(h(φ3) − 1) (A.2)
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